Trisubstituted Heteropolytungstates as Soluble Metal Oxide Analogs. Isolation and Characterization of $[(C_5Me_5)Rh\cdot P_2W_{15}Nb_3O_{62}]^{7-}$ and $[(C_6H_6)Ru\cdot P_2W_{15}Nb_3O_{62}]^{7-}$, Including the First Crystal Structure of a Dawson-Type Polyoxoanion-Supported Organometallic Complex

Matthias Pohl,^{1a,b} Yin Lin,^{1a} Timothy J. R. Weakley,^{1a} Kenji Nomiya,^{1c} Masahiko Kaneko,^{1c} Heiko Weiner,^{1b,d} and Richard G. Finke^{*,1b}

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

Received July 12, 1994[®]

The heteropolyoxoanion-supported complexes $[(C_5Me_5)Rh^{2}P_2W_{15}Nb_3O_{62}]^{7-}$, 1, and $[(C_6H_6)Ru^{2}P_2W_{15}Nb_3O_{62}]^{7-}$, 2, have been prepared by addition of $[(C_5Me_5)Rh(CH_3CN)_3]^{2+}$ or $[(C_6H_6)Ru(CH_3CN)_3]^{2+}$ to a solution of $P_2W_{15}Nb_3O_{62}^{9-}$ in acetonitrile. Isolation of these complexes as homogeneous, yellow solids as their all- $[(n-C_4H_9)_4N]^+$ salts (for 1) or as complexes with mixed $[(n-C_4H_9)_4N]^+/Na^+$ cation composition (for 1 and 2) was accomplished by repeated reprecipitation from acetonitrile with ethyl acetate. Molecular formulas for these complexes were established by complete elemental analyses, in conjunction with a sedimentation-equilibrium molecular-weight measurement. Further characterization in solution relied heavily on multinuclear NMR spectroscopy. The solution data are in accord with $[(C_5Me_5)Rh]^{2+}$ and $[(C_6H_6)Ru]^{2+}$ being supported on three niobium-bridging oxygens on the "Nb₃O₉³⁻" surface of the heteropolyoxoanion. The structural characterization of 1 in the solid state was accomplished by a single-crystal X-ray structural analysis: $P6_3/m$; a = 20.544(5), b = 20.544(5), c = 34.648(6) Å; Z = 2; R = 0.096 for 3023 observed independent reflections. The Rh atom in 1 lies on the polyoxoanion's 3-fold axis within experimental error and is bonded to the three Nb-O-Nb bridging oxygen atoms (Rh-ONb₂ 2.06 Å) that cap the P₂W₁₅Nb₃O₆₂⁹⁻ Dawson-type polyoxoanion. This crystallographic analysis, although limited by considerable disorder, represents the first solid-state structure of a Dawson-type heteropolyoxoanion-supported organometallic complex.

Introduction

One interest in heteropolyoxoanion² chemistry results from the fact that these compounds resemble discrete fragments of solid metal oxides (Figure 1),³ an important component of

Figure 1. (A) Polyhedral and (B) space-filling representations of the Dawson-type heteropolyanion α -1,2,3-P₂W₁₅Nb₃O₆₂⁹⁻. In (A) the three niobiums are represented by hatched octahedra in the 1-3 positions. The WO₆ octahedra occupy the 4-18 positions, and the PO₄ are shown as the two internal, black tetrahedra. In (B) the open circles represent bridging tungsten oxygens (W₂O), while the black circles represent terminal tungsten oxygens (WO). Niobium bridging oxygens (Nb₂O) are depicted by hatched circles, whereas niobium terminal oxygens (NbO) are shown as gray circles. From the space-filling representation it becomes clear that heteropolyoxoanions are composed of a close-packed array of oxygens, and this representation in turn reveals their potential as soluble metal oxide analogs.

heterogeneous-insoluble, metal oxide-supported catalysts. Given the difficulties⁴ in determining the structures and therefore the mechanisms of oxide-supported catalysts, and thus the subsequent problems in rationally improving such catalysts, the attraction of using polyoxoanion-supported, atomically dispersed transition metals as analogs⁵ becomes apparent. In addition,

 [®] Abstract published in Advance ACS Abstracts, December 15, 1994.
 (1) (a) University of Oregon. (b) Present address: Colorado State University, Pt. Collins, CO 80523. (c) Present address: Department of Materials Science, Kanagawa University, Hiratsuka, Kanagawa 259-12, Japan. (d) Department of Chemistry, TU Bergakademie Freiberg, D-09596 Freiberg, Germany.

^{(2) (}a) Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer-Verlag: New York, 1983. (b) Day, V. W.; Klemperer, W. G. Science 1985, 228, 533. (c) Pope, M. T.; Müller, A. Angew. Chem., Int. Ed. Engl. 1991. 30, 34. (d) Polyacometalates: From Platonic Solids to Anti-Retroviral Activity; Proceedings of the July 15-17, 1992, Meeting at the Center for Interdisciplinary Research in Bielefeld, Germany; Müller, A., Pope, M. T., Eds.; Kluwer Publishers: Dordrecht, The Netherlands, 1992.

⁽³⁾ This resemblance was first noted by: Baker, L. C. W. In Advances in the Chemistry of Coordination Compounds; Kirschnerr, S., Ed.; Macmillan: New York, 1961; p 604.

^{(4) (}a) The case in 1992 is only somewhat advanced from the 1976 conclusion of a workshop of experts that "no definitive proof of any structure of an oxide-supported catalyst has been reported".40 With modern methods such as EXAFS, some progress has been made in proposing poisoned catalyst structures (e.g. Rh(CO)2+A12O3)4c or crude catalyst "structures" constructed from EXAPS distance information only (plus chemical intuition), but even that work has not been able to provide complete structures at the atomic level.^{4d} (b) Proceedings of the 1st International Workshop on Fundamental Research in Homogeneous Catalysis, Tsutsui, M., Ugo, R., Eds.; Plenum Press: New York, 1977; p 218. (c) For lead references see: van't Bilk, H. F. J.; van Zon, J. B. A. D.; Huizinag, T.; Vis, J. C.; Koningsberger, D. C.; Prins, R. J. J. Am. Chem. Soc. 1985, 107, 3139. Frederick, B. G.; Apai, G.; Rhodin, T. N. J. Am. Chem. Soc. 1987, 109, 4797. Basu, P.; Panayotov, D.; Yates, J. T., Jr. J. Am. Chem. Soc. 1988, 110, 2074. (d) For lead references see: Gates, B. C. CHEMTECH 1989, 173. Lamb, H.; Gates, B. C.; Knözinger, H. Angew. Chem., Int. Ed. Engl. 1988, 27, 1127.

polyoxoanions having tetraalkylammonium or other organic countercations allow these polyanionic species to be solubilized in nonaqueous solvents, conditions often ideal for organic and organometallic reaction chemistry⁶ as well as other kinds of reactivity such as oxygen atom- or group-transfer processes.⁷ Because of these possibilities, polyoxometalate-supported organometallic complexes have attracted considerable interest over the past 10 years,^{8,9} including our own efforts.^{10,11}

Several years ago^{10d} we reported the synthesis and characterization of $P_2W_{15}Nb_3O_{62}^{9-}$ as well as the preliminary synthesis and solution characterization of the covalently attached, poly-oxoanion-supported complexes [(C₅Me₅)Rh-P₂W₁₅Nb₃O₆₂]⁷⁻, 1, and [(C₆H₆)Ru-P₂W₁₅Nb₃O₆₂]⁷⁻, 2.¹² However, due to the inherent presence of contaminating [(*n*-C₄H₉)₄N]⁺BF₄⁻, pure samples of 1 and 2 were not isolated nor could their solid-state

- (5) Obvious disadvantages of polyoxoanion-supported catalysts, relative to their commercially important and well-studied solid-oxide counterparts, include the limited flat surface-oxide area (6 oxygens) of the present polyoxoanions, the inability (at least presently) to support multimetal clusters or particles, and the lack of high-temperature thermal stability of the type commonly found in solid-oxide-supported heterogeneous catalysts. Hence, these polyoxoanion-supported analogs are not intended to replace or even to closely "model" polymetallic metal cluster particles supported on solid oxides; this work has not been undertaken in order to "model" oxide-supported catalysts. (Model studies in science generally provide information about the model system only, rigorously speaking.) Rather, these polyoxoanionsupported complexes are novel compositions of matter which are in principle completely characterizable structurally and mechanistically at the atomic level. In addition, as new and novel materials, they should have their own unique chemistry and reactivity. In selected cases they may provide the best available examples of badly needed spectroscopic models of atomically dispersed metal complexes, for example Rh-(CO)₂-solid-oxides,^{4c} but we emphasize that this has never been our primary goal.
- (6) (a) Day, V. W.; Klemperer, W. G. Science 1985, 228, 533. (b) Katsoulis, D. E.; Pope, M. T. J. Chem. Soc., Chem. Commun. 1986, 1186.
- (7) (a) Katsoulis, D. E.; Pope, M. T. J. Chem. Soc., Chem. Commun. 1986, 1186. (b) Piepgrass, K.; Pope, M. T. J. Am. Chem. Soc. 1989, 111, 753.
- (8) Besecker, C. J.; Klemperer, W. G. J. Am. Chem. Soc. 1980, 102, 7598.
 (9) (a) Besecker, C. J.; Day, V. W.; Klemperer, W. G. Organometallics 1985, 4, 564. (b) Day, V. W.; Fredrich, M. F.; Thompson, M. R.; Klemperer, W. G.; Liu, R.-S.; Shum, W. J. Am. Chem. Soc. 1981, 103, 3597. (c) Besecker, C. J.; Day, V. W.; Klemperer, W. G.; Thompson, M. R. J. Am. Chem. Soc. 1984, 106, 4125. (d) Besecker, C. J.; Day, V. W.; Klemperer, W. G.; Thompson, M. R. Inorg. Chem. 1985, 24, 44. (e) Besecker, C. J.; Klemperer, W. G.; Day, V. W. J. Am. Chem. Soc. 1982, 104, 6158. (f) Klemperer, W. G.; Yagasaki, A. Bull. Chem. Soc. Jpn. 1989, 2041. (g) Main, D. J. Dissertation, University of Illinois, Urbana-Champaign, 1987. (h) Klemperer, W. G.; Main, D. J. Inorg. Chem. 1990, 29, 2355. (i) Day, V. W.; Klemperer, W. G.; Main, D. J. Inorg. Chem. 1990, 29, 2345. (j) Day, V. W.; Eberspacher, T. A.; Klemperer, W. G.; Planalp, R. P.; Schiller, P. W.; Yagasaki, A.; Zhong, B. Inorg. Chem. 1993, 32, 1629.
- (10) (a) Finke, R. G.; Droege, M. J. Am. Chem. Soc. 1984, 106, 7274. (b) Finke, R. G.; Rapko, B.; Domaille, P. J. Organometallics 1986, 5, 175. (c) Finke, R. G.; Rapko, B.; Saxton, R. J.; Domaille, P. J. J. Am. Chem. Soc. 1986, 108, 2947. (d) Edlund, D. J.; Saxton, R. J.; Lyon, D. K. Finke, R. G. Organometallics 1988, 7, 1692. (e) Suslick, K. S.; Cook, J. C.; Rapko, B.; Droege, M. W.; Finke, R. G. Inorg. Chem. 1986, 25, 241. (f) Rapko, B. Dissertation, University of Oregon, 1986. (g) Finke, R. G.; Green, C. A.; Rapko, B. Inorg. Synth. 1990, 27, 128. (h) Edlund, D. J. Dissertation, University of Oregon, 1987. (i) Lyon, D. K. Dissertation, University of Oregon, 1987. (i) Lyon, D. K. Dissertation, University of Oregon, 1990.

(11) (a) Recently we were able to show that [(n-C4H9)4N]₅Na₃[(1,5-COD)IrP₂W₁₅Nb₃O₆₂] is a precatalyst for both hydrogenation^{11d} and oxygenation^{11c} reactions. This complex was characterized by a complete elemental analysis plus ³¹P, ¹⁸³W, ¹H, and ¹³C NMR, IR, and sedimentation-equilibrium molecular-weight measurements.^{11f 17}O NMR studies demonstrate that [(1,5-COD)Ir]⁺ binds in overall C₃, symmetry to three Nb₂O bridging oxygens of the Nb₃O₆₂^{9⁻⁷} oxygen surface in the soluble, metal-oxide support system, P₂W₁₅Nb₃O₆₂^{9⁻⁷, 11e} (b) The complex [(C₆H₆)Ru·P₂W₁₅Nb₃O₆₂]⁷⁻, **2**, has also been shown to catalyze the oxygenation of cyclohexene with molecular oxygen.^{11c,17b} (c) Mizuno, N.; Lyon, D. K.; Finke, R. G. J. Catal. **1991**, *128*, 84. (d) Lin, Y.; Finke, R. G. J. Am. Chem. Soc. **1994**, *11*6, 8335. (e) Pohl, M.; Finke, R. G. Organometallics **1993**, *12*, 1453. (f) Pohl, M. Dissertation, University of Oregon, 1994; Chapter IV.

composition and purity (e.g., by elemental analysis) or solidstate structure be established.

Herein we report the isolation and characterization of $[(C_5Me_5)RhP_2W_{15}Nb_3O_{62}]^{7-}$, 1, and $[(C_6H_6)RuP_2W_{15}Nb_3O_{62}]^{7-}$, 2, as homogeneous, yellow solids as their all- $[(n-C_4H_9)_4N]^+$ salt (for 1) or as complexes with mixed $[(n-C_4H_9)_4N]^+/Na^+$ cation composition (for 1 and 2). The composition of these complexes was established by complete elemental analyses and solution molecular-weight measurements. Structural characterization in solution was accomplished by IR, ¹H NMR, ³¹P NMR, and ¹⁸³W NMR spectroscopy. In addition, $[(C_5Me_5)RhP_2W_{15}Nb_3O_{62}]^{7-}$ was characterized by a single-crystal X-ray crystallographic structural analysis, providing the long-sought first solid-state structure of a Dawson-type heteropolyoxoanion-supported organometallic complex.

Results and Discussion

Synthesis, Isolation, and Characterization of $[(C_5Me_5)-Rh\cdotP_2W_{15}Nb_3O_{62}]^{7-}$. The synthesis of $[(C_5Me_5)Rh\cdotP_2W_{15}Nb_3O_{62}]^{7-}$, 1, parallels those reported earlier for the $[(1,5-COD)M]^+$ analogs $[(n-C_4H_9)_4N]_5Na_3[(1,5-COD)M\cdotP_2W_{15}Nb_3O_{62}]$ $(M = Ir, Rh).^{13}$ It follows the conceptually straightforward route outlined in eqs 1a,b. The desired product is obtained as an analytically pure, homogeneous, yellow complex as its all $[(n-C_4H_9)_4N]^+$ salt, $[(n-C_4H_9)_4N]_7[(C_5Me_5)Rh\cdotP_2W_{15}Nb_3O_{62}]$, on a 2.3 g scale (50% yield). (The synthesis of the mixed $[(n-C^4H_9)_4N]^+/Na^+$ salt gives a higher yield (70%); however, this material is slightly impure by elemental analysis and hence is reported in the supplementary material).

$$[(n-C_{4}H_{9})_{4}N]_{9}P_{2}W_{15}Nb_{3}O_{62} + [(C_{5}Me_{5})Rh(CH_{3}CN)_{3}][BF_{4}]_{2} \xrightarrow{CH_{3}CN} [(n-C_{4}H_{9})_{4}N]_{7}[(C_{5}Me_{5})Rh P_{2}W_{15}Nb_{3}O_{62}] + 2[(n-C_{4}H_{9})_{4}N]BF_{4} (1a)$$

$$[(n-C_{4}H_{9})_{4}N]_{7}[(C_{5}Me_{5})Rh\cdotP_{2}W_{15}Nb_{3}O_{62}] + \\ 1. CH_{3}CN \\ 2[(n-C_{4}H_{9})_{4}N]BF_{4} \xrightarrow{2. EtOAc precipitation \\ 3. -2[(n-C_{4}H_{9})_{4}N]BF_{4}} \\ [(n-C_{4}H_{9})_{4}N]_{7}[(C_{5}Me_{5})Rh\cdotP_{2}W_{15}Nb_{3}O_{62}]^{\downarrow} (1b)$$

The molecular formula of 1 is established by an elemental analysis (all elements, including oxygen; see the Experimental Section). Ultracentrifugation sedimentation-equilibrium molecular-weight experiments using isolated 1 confirm our previous finding^{10d} that the compound is an unaggregated monomer under the conditions of the experiment \bar{M}_w (calc for the anion) 4328, \bar{M}_w (found) 4873 ± 600 in CH₃CN containing 0.1 M [(*n*-C₄H₉)₄N]⁺PF₆⁻ (supplementary material, Figure A; \bar{M}_w = weight-average molecular weight).¹⁴

^{(13) (}a) Nomiya, K.; Pohl, M.; Mizuno, N.; Lyon, D. K.; Finke, R. G. Inorg. Synth. in press. (b) Pohl, M.; Lyon, D. K.; Mizuno, N.; Nomiya, K.; Finke, R. G. Inorg. Chem., in press.

⁽¹⁴⁾ In the determination of the molecular weight, the absorbance of the solution is measured in the UV region (335 nm), where both the heteropolyoxoanion and [(C₅Me₅)Rh]²⁺ absorb.

Figure 2. ³¹P NMR spectrum in DMSO- d_6 of the all- $[(n-C_4H_9)_4N]_7$ complex of 1 showing its high homogeneity and purity ($\geq 95\%$).

Infrared measurements (supplementary material, Figure B) confirm that the Dawson-type, " $P_2M_{18}O_{62}^{n-}$ " heteropolytungstate framework remains intact under the conditions of the synthesis, consistent with formulation of 1 as containing intact $P_2W_{15}Nb_3O_{62}^{9-}$ with $[(C_5Me_5)Rh]^{2+}$ firmly supported upon its surface. Moreover, a careful examination of the IR spectrum of 1 as a KBr disk reveals a lack of bands corresponding to coordinated CH₃CN. The only plausible inner-sphere ligands for the otherwise $12e^-$ rhodium fragment $[(C_5Me_5)Rh]^{2+}$, then, are the surface oxygens of $P_2W_{15}Nb_3O_{62}^{9-}$.

Further solution characterization relied heavily on multinuclear NMR spectroscopy (³¹P, ¹⁸³W, and ¹H NMR). The ³¹P and ¹⁸³W NMR spectra are useful in characterizing the heteropolyoxoanion support's purity and framework, respectively (and provide initial evidence for the binding of the fragment). A ³¹P NMR spectrum of 1 in DMSO-*d*₆ (Figure 2) shows primarily two resonances at δ -8.4 and -14.2 with integrated intensities of 1:1 as expected for the two types of phosphorus present. These ³¹P NMR results demonstrate that 1 is obtained *as at least 95% of a single isomer*.

Also quite informative are changes in the ³¹P NMR peak positions for 1 in DMSO- d_6 (-8.4 and -14.2 (±0.2) ppm) in comparison to the starting material P₂W₁₅Nb₃O₆₂⁹⁻ (-7.2 and -14.2 (±0.2) ppm), as they show a pronounced upfield shift of the phosphorus resonance closest to the "Nb₃O₉³⁻" cap in P₂W₁₅Nb₃O₆₂⁹⁻ (recall Figure 1). This observation is in accord with, and actually *prima facie* evidence for, preferential binding of [(C₅Me₅)Rh]²⁺ to the more basic "Nb₃O₉³⁻" cap *in solution*. The observed line widths, $\Delta v_{1/2} = 3-4$ Hz for the two resonances of 1 in the ³¹P NMR spectrum are comparable to those observed for the unsupported polyoxoanion, P₂W₁₅Nb₃O₆₂⁹⁻, which exhibits values for $\Delta v_{1/2}$ of 3-5 Hz.

Figure 3. Structure of $[(C_5Me_5)Rh\cdot P_2W_{15}Nb_3O_{62}]^{7-}$. The Nb and W(3) atoms each are composites, Nb_{0.5}W_{0.5}, because the anion adopts two equally-weighted orientations related by the mirror plane of a 3/m (D_{3h}) crystallographic site. The C₅Me₅ group lies in a plane normal to the anion C_3 axis and is disordered because of the incompatibility of its 5-fold symmetry with that axis. The C₅Me₅ could not be located by X-ray single-crystal structure analysis but is present by ⁻¹H NMR spectroscopy and elemental analysis.

The ¹H NMR spectrum shows a single resonance for the C₅-Me₅ group at δ 1.82 in CD₃CN (δ 1.84 in DMSO-d₆), providing further evidence (in addition to the ³¹P NMR) for existence of a single species in solution. No resonances are observed at δ 1.87, indicating the absence of free [Rh(C₅Me₅)(CD₃CN)₃]²⁺ (in a control experiment 10% of [Rh(C₅Me₅)(CD₃CN)₃]²⁺ was added to the solution proving that it could have been easily detected had it been present).

Evidence for the covalent, inner-sphere bonding of $[(C_5-Me_5)Rh]^{2+}$ to $P_2W_{15}Nb_3O_{62}^{9-}$ (rather than an $[(C_5Me_5)Rh(CH_3-CN)_3]^{2+}$ ion-paired complex) is provided by ion-exchange experiments (as well as IR, ¹H, and ³¹P NMR spectra; *vide supra*), specifically ion (non)-exchange experiments which demonstrate the nonexchangeability in acetonitrile of the cationic $[(C_5Me_5)Rh]^{2+}$ component of $[(C_5Me_5)RhP_2W_{15}Nb_3O_{62}]^{7-}$.

The ¹⁸³W NMR spectrum of **1** in DMSO- d_6 shows three peaks, indicating that $[(C_5Me_5)Rh\cdot P_2W_{15}Nb_3O_{62}]^{7-}$ has $C_{3\nu}$ pseudosymmetry on the ¹⁸³W NMR time scale¹⁵ (pseudo, as the Rh·P₂W₁₅Nb₃O₆₂ part of the molecule has $C_{3\nu}$ symmetry, but the C₅Me₅ moiety does not, having a C₅ axis instead). The integrated intensities are in accord with the presence of two tungsten belts consisting of six WO₆ octahedra each and a tungsten cap of three WO₆ octahedra.

The ¹H, ³¹P, and ¹⁸³W NMR spectroscopic data for the mixed Na⁺/[(n-C₄H₉)₄N]⁺ salt of 1 are identical to those for the all-[(n-C₄H₉)₄N]⁺ salt. (When ³¹P and ¹⁸³W NMR data for sodium-containing complexes are collected, addition of Kryptofix 2.2.2. to the sample solutions is necessary. Otherwise, ion-pairing interactions between Na⁺ and primarily the more basic "Nb₃O₉³⁻" end of P₂W₁₅Nb₃O₆₂⁹⁻ lead to line-broadening and the observation of additional peaks.^{11d}) However, note that the isolated complex of 1 with mixed Na⁺/[(n-C₄H₉)₄N]⁺ countercation composition is somewhat less pure than the analytically pure

^{(15) (}a) This argument assumes that any non-C₃, isomers would be detected by ¹⁸³W NMR spectroscopy. This assumption is supported by the fact that C_s symmetry isomers are detected by ¹⁸³W NMR for [CpTi³⁺, P₂W₁₅V₃O₆₂⁹⁻¹⁶⁻, although a more strongly supported CpTi³⁺ trication is involved.^{15b} plus the fact that even Na⁺ ion-pairing is detectable (in the absence of added Kryptofix 2.2.2.) as excess line width in the ¹⁸³W NMR spectrum of heteropolyoxoanion-supported complexes.^{116,126} (However, our other work suggests that ¹⁸³W NMR of P₂W₁₅Nb₃O₆₂⁹⁻ supported organometallics becomes relatively insensitive once monocations such as [Ir(1,5-COD)]⁺ are supported.¹¹¹ (b) Rapko, B. M.; Pohl, M.; Finke, R. G. Inorg. Chem. **1994**, *33*, 3625.

Table 1. Crystallographic Data for $Na[(n-C_4H_9)_4N]_6[(C_5Me_5)Rh\cdotP_2Nb_3W_{15}O_{62}]\cdot10MeCN\cdot10Me_2CO$

approx compn	C ₁₅₆ H ₃₂₁ N ₁₆ Na-	d_{calc}	1.78 g cm ⁻³
	$Nb_3O_{72}P_2RhW_{15}$	Т	21 °C
fw	6798	λ	0.710 69 Å
space group	P63/m	μ	71.9 cm^{-1}
a	20.544(5) Å	rel transm coeff	$0.78 - 1.00 (\psi)$
Ь	20.544(5) Å	no. of obs rflns	$3023 [I \ge 3\sigma(I)]$
С	34.648(6) Å	$R(F_{o})^{a}$	0.096
V	12664(8) Å ³	$R_{\mathbf{w}}(F_{\mathbf{o}})^{b}$	0.147
Ζ	2		

 ${}^{a}R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}R_{w}(F) = [\sum w(|F_{o}| - |F_{c}|)^{2} / \sum w|F_{o}|^{2}]^{1/2}.$

Table 2. Atomic Coordinates and Isotropic and Thermal Parameters (\mathring{A}^2) for Atoms in the Anion

atom	x	у	z	B_{eq} , ^c Å ²
W (1)	0.48885(12)	0.17047(12)	0.19562(6)	3.9(1)
W(2)	0.64120(12)	0.15105(12)	0.19557(6)	3.9(1)
W(3) ^a	0.55610(17)	0.28886(17)	0.10743(8)	4.4(1)
\mathbf{Rh}^{a}	2/3	1/3	0.0398(4)	6.1(6)
$Nb^{a,b}$	0.5561	0.2889	0.10744.4	
Р	² / ₃	1/3	0.1934(7)	4.1(5)
O(1)	0.3947(17)	0.1009(17)	0.1854(8)	4.4(7)
O(2)	0.6429(16)	0.0651(17)	0.1857(8)	4.5(7)
O(3)	0.4890(18)	0.2565(18)	0.0731(9)	5.7(9)
O(4)	0.4979(27)	0.1673(27)	1/4	6(1)
O(5)	0.5376(16)	0.1104(16)	0.1890(8)	4.2(7)
O(6)	0.5129(16)	0.2090(16)	0.1436(8)	3.8(7)
O(7)	0.7438(15)	0.2262(15)	0.2078(8)	3.5(7)
O(8)	0.6183(27)	0.1384(28)	1/4	6(1)
O(9)	0.6605(15)	0.1856(16)	0.1430(8)	3.4(7)
O(10)	0.6211(17)	0.2527(17)	0.0826(9)	5.1(8)
O(11)	² / ₃	1/3	0.1469(16)	5(1)
O(12)	0.6168(14)	0.2518(15)	0.2064(7)	2.9(6)

^{*a*} Site occupancy factor 0.5. ^{*b*} W(3) and Nb have the same x, y, z, and U_{ij} parameters. ^{*c*} For the metal atoms, $B_{eq} = (8\pi^2/3)\sum_i \sum_j U_{ij}a^*_i a^*_j a_i \cdot a_j$.

all- $[(n-C_4H_9)_4N]^+$ salt of 1 as judged by elemental analysis and ³¹P NMR spectroscopy (see the supplementary material for more details).

There can be little doubt, therefore (and given the analytical, MW, IR, ion-exchange, and ³¹P NMR evidence), that even in solution $[(C_5Me_5)Rh]^{2+}$ is firmly attached to a single P_2W_{15} -Nb₃O₆₂⁹⁻. Moreover, the average symmetry of 1 in solution is also (pseudo) $C_{3\nu}$ (based on the ¹⁸³W NMR). Hence, the $[(C_5Me_5)Rh]^{2+}$ must be attached to the "Nb₃O₉³⁻" cap equally to each of the three Nb₂O oxygens (i.e., in order to achieve effective $C_{3\nu}$ symmetry), a conclusion that is independently and unequivocally confirmed by a single-crystal X-ray structure analysis (*vide infra*) of 1 in the solid state.

X-ray Single-Crystal Structure Analysis of 1. An X-ray diffraction structure analysis shows that 1 is composed of discrete, disordered $[(C_5Me_5)RhP_2W_{15}Nb_3O_{62}]^{7-}$ anions (Figure 3, Table 1) and $[(n-C_4H_9)_4N]^+$ and Na⁺ cations. (Due to its lower solubility, the mixed $Na^+/[(n-C_4H_9)_4N]^+$ salt of 1 crystallizes more easily than the all- $[(n-C_4H_9)_4N]^+$ salt.) The Dawsontype anion has approximate symmetry $3m(C_{3\nu})$, with the Rh atom on or very close to the polyoxoanion's 3-fold axis and bonded (Rh-ONb₂ 2.06 Å) to three oxygen atoms, each of which bridges a pair of heavy atoms M in a cap of the Dawson unit. The M atoms each are composites, $Nb_{0.5}W_{0.5}$, because the anion adopts two equally-weighted orientations related by the mirror plane of a 3/m (D_{3h}) crystallographic site. The C₅-Me₅ group, which could not be located but is present (by ${}^{1}H$ NMR spectroscopy and elemental analysis), must lie in a plane normal to the anion C_3 axis; its extreme disorder is due to the incompatibility of its 5-fold symmetry with the 3-fold axis of the $P_2W_{15}Nb_3O_{62}^{9-}$ polyoxoanion axis. Atomic coordinates and

Table 3. Bond Lengths in the Anion $(Å)^a$

_		-		
	W(1) - O(1)	1.77(3)	W(2)-O(12)	2.39(3)
	W(1) - O(4)	1.90(1)	W(3) - O(3)	1.68(3)
	W(1) - O(5)	1.95(3)	W(3) - O(6)	1.90(3)
	W(1) - O(6)	1.93(3)	$W(3) - O(9^{i})$	1.92(3)
	$W(1) - O(7^{i})$	1.88(3)	W(3) - O(10)	2.02(3)
	W(1) - O(12)	2.33(3)	$W(3) - O(10^{i})$	1.92(3)
	W(2) - O(2)	1.82(3)	W(3) - O(11)	2.41(3)
	W(2) = O(5)	1.87(3)	Rh = O(10)	2.06(3)
	W(2) - O(7)	1.94(3)	P-O(11)	1.61(6)
	W(2) - O(8)	1.93(1)	P-O(12)	1.53(3)
	W(2) - O(9)	1.92(3)	. ,	

^a Unrefined bond lengths: Rh-C(15), 2.20; Rh-C(16), 2.14.

anisotropic thermal parameters for non-hydrogen atoms of 1 are given with estimated standard deviations in Table 2. Bond angles and lengths for $[(C_5Me_5)Rh\cdot P_2W_{15}Nb_3O_{62}]^{7-}$ are given in Tables 3 and 4; Table 5 lists the distances between heavy atoms.

An interesting and important point is that only two $[(n-C_4H_9)_4N]_6Na[(C_5Me_5)Rh\cdotP_2Nb_3W_{15}O_{62}]$ units are present in a cell large enough to accommodate five or six in the absence of solvent (supplementary material, Figure G). This is presumably one key reason that it has been very difficult to prepare diffracting crystals of the $[(n-C_4H_9)_4N]^+$ salts of such large polyoxoanions in non-hydrogen-bonding solvents.

Synthesis, Isolation, and Characterization of $[(C_6H_6)Ru$ · P₂W₁₅Nb₃O₆₂]⁷⁻. The preparation (eqs 2a,b) of $[(C_6H_6)Ru$ · P₂W₁₅Nb₃O₆₂]⁷⁻, **2**, proceeds analogously to the one described above for the $[(C_5Me_5)Rh]^{2+}$ heteropolyoxoanion-supported complex. [Note that we had to use a refined procedure for the

[(n-

$$C_{4}H_{9}_{4}N]_{9}P_{2}W_{15}Nb_{3}O_{62} + [(C_{6}H_{6})Ru(CH_{3}CN)_{3}][BF_{4}]_{2} \xrightarrow{2. CH_{3}CN} + [(n-C_{4}H_{9})_{4}N]_{7}[(C_{6}H_{6})Ru P_{2}W_{15}Nb_{3}O_{62}] + 2[(n-C_{4}H_{9})_{4}N]BF_{4} (2a)$$

$$[(n-C_{4}H_{9})_{4}N]_{7}[(C_{6}H_{6})Ru\cdotP_{2}W_{15}Nb_{3}O_{62}] \xrightarrow{1. CH_{3}CN} \xrightarrow{2. ErOAc precipitation}{3. + 3 NaBF_{4}} [(n-C_{4}H_{9})_{N}]_{4.5}Na_{2.5}[(C_{6}H_{6})Ru\cdotP_{2}W_{15}Nb_{3}O_{62}] \downarrow (2b)$$

preparation of $P_2W_{15}Nb_3O_{62}^{9-}$ in its fully deprotonated form, as otherwise persistently low ruthenium analyses were obtained (see the Experimental Section for further details).] The desired product is obtained as a homogeneous, yellow solid in form of the mixed $[(n-C_4H_9)_4N]^+/Na^+$ cation salt on a 8.4 g scale (76% yield). The synthesis of the mixed salt, eq 2b, allows for the isolation of $[(n-C_4H_9)_4N]^+BF_4^-$ free material in high yield.

The molecular formula of 2 is consistent with the elemental analysis (all elements, including oxygen; see the Experimental Section and the supplementary material, Table B, where alternative formulations are ruled out). The C, H, N, and Na analysis reveals an average countercation composition of 4.5 $[(n-C_4H_9)_4N]^+/2.5 \text{ Na}^+$ per anion.¹⁶ In two separate control experiments (see the Experimental Section for a detailed account) it was shown that 2 is neither light- nor air-sensitive,¹⁷ as judged by ³¹P NMR spectroscopy. The lack of O₂ sensitivity

⁽¹⁶⁾ Note that the given composition of [(n-C₄H₉)₄N]_{4.5}Na_{2.5} (calc: C, 17.25; H, 3.12; N, 1.30; Na, 1.07) matches the experimental values (found: C, 17.28; H, 3.27; N, 1.44; Na, 1.24) better than the alternative formulations [(n-C₄H₉)₄N]₅Na₂ (calc: C, 18.69; H, 3.39; N, 1.25; Na, 0.83) and [(n-C₄H₉)₄N]₄Na₃ (calc: C, 15.80; H, 2.84; N, 1.32; Na, 1.30).

Table 4. Bond Angles (deg)

	-		
O(1) - W(1) - O(4)	105(2)	O(3)-W(3)-O(9)	104(1)
O(1) - W(1) - O(5)	99(1)	O(3) - W(3) - O(10)	97(1)
O(1) - W(1) - O(6)	96(1)	O(3) - W(3) - O(10)	100(1)
O(1) - W(1) - O(7)	104(1)	O(3) - W(3) - O(11)	169(1)
O(1) - W(1) - O(12)	173(1)	O(6)-W(3)-O(9)	85(1)
O(4) - W(1) - O(5)	90(2)	O(6) - W(3) - O(10)	94(1)
O(4) - W(1) - O(6)	159(2)	O(6)-W(3)-O(10)	159(1)
O(4) - W(1) - O(7)	82(2)	O(6) - W(3) - O(11)	84(1)
O(4) - W(1) - O(12)	77(2)	O(9)-W(3)-O(10)	159(1)
O(5)-W(1)-O(6)	92(1)	O(9)-W(3)-O(10)	95 (1)
O(5) - W(1) - O(7)	157(1)	O(9) - W(3) - O(11)	86 (1)
O(5) - W(1) - O(12)	74(1)	O(10) - W(3) - O(10)	78(2)
O(6) - W(1) - O(7)	87(1)	O(10) - W(3) - O(11)	73(1)
O(6) - W(1) - O(12)	84(1)	O(10) - W(3) - O(11)	75(1)
O(7) - W(1) - O(12)	83(1)	O(10) - Rh - O(10)	74(1)
O(2) - W(2) - O(5)	97(1)	O(11)-P-O(12)	107(1)
O(2) - W(2) - O(7)	106(1)	O(12)-P-O(12)	112(1)
O(2) - W(2) - O(8)	100(2)	W(1) - O(4) - W(1)	166(3)
O(2) - W(2) - O(9)	95 (1)	W(1) - O(5) - W(2)	122(1)
O(2) - W(2) - O(12)	170(1)	W(1) = O(6) = W(3)	152(2)
O(5) - W(2) - O(7)	158(1)	W(1) = O(7) = W(2)	148(2)
O(2) - W(2) - O(8)	85(2)	W(2) - O(8) - W(2)	156(3)
O(5) - W(2) - O(9)	92(1)	W(2) - O(9) - W(3)	149(2)
O(5) - W(2) - O(12)	74(1)	W(3) - O(10) - W(3)	121(2)
O(7) - W(2) - O(8)	89(2)	W(3) - O(10) - Rh	97(1)
O(7) - W(2) - O(9)	88(1)	W(3)-O(10)-Rh	100(1)
O(7) - W(2) - O(12)	84(1)	W(3) - O(11) - W(3)	91(2)
O(8) - W(2) - O(9)	165(2)	W(3)-O(11)-P	125(1)
O(8) - W(2) - O(12)	80(2)	W(1) = O(12) = W(2)	90(1)
O(9)-W(2)-O(12)	86(1)	W(1)-O(12)-P	129(1)
O(3)-W(3)-O(6)	101(1)	W(2)-O(12)-P	126(1)

Table 5. Distances between Heavy Atoms (Å)

$W(1)\cdots W(2)$ $W(1)\cdots W(2)^{a}$	3.347(3)	$W(2) \cdots W(3)^c$	3.696(4)
	3.672(3)	W(2) \cdots W(2)^b	3.772(4)
$\mathbf{W}(1)\cdots\mathbf{W}(3)$ $\mathbf{W}(1)\cdots\mathbf{W}(1)^{b}$	3.715(4)	$W(3) \cdot \cdot \cdot W(3)^a$	3.429(5)
	3.769(4)	$W(3) \cdot \cdot \cdot Rh$	3.07(1)

^a Symmetry code: 1 - x + y, 1 - x, z. ^b Symmetry code: x, y, $\frac{1}{2} - z$. ^c Symmetry code: 1 - y, x - y, z.

is noteworthy, given that 2 is an effective cyclohexene oxidation catalyst^{17b} using O_2 , and requires that 2 and O_2 do not react directly during catalysis.

Infrared measurements (supplementary material, Figure D) confirm that the Dawson-type, $P_2W_{15}Nb_3O_{62}^{9^-}$ heteropolytungstate framework remains intact under the conditions of the synthesis, consistent with the formulation of **2** as containing intact $P_2W_{15}Nb_3O_{62}^{9^-}$ with $[(C_6H_6)Ru]^{2+}$ supported upon its surface. Confirming evidence for the covalent, inner-sphere bonding of $[(C_6H_6)Ru]^{2+}$ to $P_2W_{15}Nb_3O_{62}^{9^-}$ includes experiments with ion-exchange resins which demonstrate the nonexchangeability in acetonitrile of the cationic $[(C_6H_6)Ru]^{2+}$ in **2**. An ultracentrifugation sedimentation-equilibrium molecularweight experiment shows that the compound is an unaggregated monomer under the conditions of the experiment (supplementary material, Figure C).

Further solution characterization was accomplished by multinuclear NMR spectroscopy (³¹P, ¹⁸³W, ¹H NMR). A ³¹P NMR spectrum of **2** in CD₃CN (Figure 4) acquired after addition (again to remove the ion-pairing^{11e,f}) of 3 equiv of Kryptofix 2.2.2. shows primarily two resonances at δ -7.7 and -13.3 with integrated intensities of 1:1, as expected for the two types of phosphorus present, and requires that **2** is obtained as at least 94% of a single species and isomer.

The ¹H NMR spectrum shows primarily a single resonance for the C₆H₆ group at δ 5.99 in CD₃CN, providing further evidence (in addition to the ³¹P NMR) for existence of a single supported-(C₆H₆)Ru²⁺ species in solution. [A smaller, unidentified resonance at δ 6.06 (less than 5% by integration and by comparison to the main δ 5.99 resonance) is also observed. However, an elemental analysis for Cl⁻ shows the absence of chloride within the detection limits (<0.05%); hence, on the basis of these data, we exclude the presence of any (C₆H₆)-RuCl species.] Significantly, no resonances are observed at δ 6.20, indicating the absence of [Ru(C₆H₆)(CD₃CN)₃]²⁺ (in a control experiment 10% of [Ru(C₆H₆)(CD₃CN)₃]²⁺ was added to the solution proving that it could have been easily detected had it been present).

The ¹⁸³W NMR spectrum of **2** in CD₃CN (Figure 5) shows three peaks, indicating that $[(C_6H_6)Ru \cdot P_2W_{15}Nb_3O_{62}]^{7-}$ has $C_{3\nu}$

^{(17) (}a) (Arene)ruthenium(II) complexes are known to undergo areneexchange reactions in aromatic solvents when heated or irridiated with UV light.^{21b} Furthermore, photolysis of the (benzene)ruthenium complex $[(C_6H_6)Ru(P_3O_9)][(n-C_4H_9)_4N]$ by UV light for 25 h in acetonitrile has been shown to result in benzene loss and formation of $[(CH_3CN)_3Ru(P_3O_9)][(n-C_4H_9)_4N]$ -CH_3CN.^{12b} (b) Previously we surmised that, because 2 is an effective catalyst for a reaction involving O₂, "the spectroscopic data reported (previously, for 2 in solution; see ref 10d) may be for an oxidized form (of 2)".^{11c} Now we can state that, in point of fact, 2 is not O2 sensitive over 12 h in air at room temperature (nor are *any* of the seven Ru-polyoxoanion complexes recently reported by Klemperer and co-workers^{12b} air sensitive). The important mechanistic implication for the cyclohexene oxidation by 2 using O_2 over 20 h, then, and one consistent with our other mechanistic data to date (Trovarelli, A.; Weiner, H.; Finke, R. G., unpublished results), is that 2 is part of an autooxidation reaction involving 2 reacting with trace cyclohexene-OOH, present initially, and in a radical-chain reaction. (c) The additional mechanistic implication is that both O2 and olefin, not O2 alone,12b should be employed when polyoxoanion-supported Ru complexes are tested for stoichiometric or catalytic oxidation activity.

^{(18) (}a) Modified to allow for acquisition of spectra by M. Strain, Institute of Molecular Biology, University of Oregon, (b) It is well-known in the ³¹P NMR literature that chemical shift data reliable to, e.g., ± 0.2 ppm or better require referencing to an internal, not external, standard^{18c} so that the solvent's diamagnetic susceptibility is removed from the reported chemical shift. When using an external standard, either in a sealed capillary or by the substitution method, we often find larger variations, ±0.5 ppm or more, in chemical shift. For example, just using a 5 mm (rather than a 10 mm) NMR tube, along with a 85% H₃PO₄ external standard, yields chemical shifts that are offset by ca. +0.5 ppm (i.e., vs those in the 10 mm tube) due presumably to the differing magnitudes of the volume diamagnetic susceptibility of the solvent.^{18c} Thus, and despite the fact that corrections for the volume diamagnetic susceptibility of the solvent are virtually never reported in the polyoxoanion literature, we conclude that they should be, and we are engaged in a search for suitable nonreactive *internal* standards.^{18d} (c) See for example: Brevard, C.; Granger, P. Handbook of High Resolution Multinuclear NMR; Wiley: New York, 1981; pp 39–46. Mason, J., Ed. Multinuclear NMR; Plenum Press: New York, 1987; p 370 and references therein. (d) Under acidic conditions, possible internal (so-called secondary) reference standards 18b might include $PW_{12}O_{40}{}^{3-}$ or $P_2W_{18}O_{62}{}^{6-}$. Under neutral to basic conditions, P2W15Nb3O629- might be a useful internal, secondary-reference standard. This compound seems particularly wellsuited as an internal, secondary standard for the measurement of ³¹P NMR chemical shift data of polyoxoanions under higher pH conditions for several reasons: (i) its ³¹P NMR resonances are observed in a chemical shift range typical of most polyoxoanions, (ii) it is available both in an organic solvent-soluble formulation (as its $[(n-C_4H_9)_4N]_9$ salt) and in a water-soluble formulation (as its Na9 salt), and (iii) it is relatively stable in organic and in higher-pH-controlled aqueous solutions. (The basicity and nucleophilic reactivity of the "Nb₃O₉³⁻" end of this polyoxoanion mean that it will not be suitable for more acidic or electrophilic reagent conditions.) (e) A related problem exists when chemical shifts uncorrected for the volume diamagnetic susceptibility of the solvent that are measured on older Fe core magnets (i.e., with horizontal fields perpendicular to the sample axis) are compared to uncorrected chemical shifts measured on superconducting magnets (i.e., with vertical fields parallel to the sample axis); see p 41 in ref 18c and Domaille's treatment of this in the specific case of a polyoxoanion sample: Domaille, P. J.; Watunya, G. Inorg. Chem. 1986, 25, 1239 (see footnote 12 therein). See also: Batley, M.; Redmond, J. W. J. Magn. Reson. 1982, 49, 172. (f) ⁵¹V NMR chemical shifts and corrections for the volume diamagnetic susceptibility of the solvent: Harrison, A. D.; Horwath, O. W.; J. Chem. Soc., Dalton Trans. 1985, 1173.

⁽¹⁹⁾ Kang, J. W.; Moseley, K.; Maitlis, P. M. J. Am. Chem. Soc. 1969, 91, 5970.

Figure 4. ³¹P NMR spectrum of $[(n-C_4H_9)_4N]_{4.5}Na_{2.5}[(C_6H_6)RurP_2W_{15}-Nb_3O_{62}]$, 2, in CD₃CN showing its purity of ca. 94%. The ³¹P NMR spectrum shows the presence of ca. 6% unreacted $\bigcirc 2W_{15}Nb_3O_{62}^{9-}$, compared to typically 15–20% in all other previously attempted preparations. This spectrum was collected on a Bruker 300 NMR instrument at CSU.

Figure 5. ¹⁸³W NMR spectrum of $[(n-C_4H_9)_4N]_{4.5}Na_{2.5}[(C_6H_6)RuP_2W_{15}-Nb_3O_{62}]$ in CD₃CN with 3 equiv of Kryptofix 2.2.2. added, showing primarily three peaks indicating that the predominant form of $[(C_6H_6)RuP_2W_{15}Nb_3O_{62}]^{7-}$ has $C_{3\nu}$ (pseudo) symmetry on the ¹⁸³W time scale¹⁵ (spectrum collected on a Bruker AM500, CSU).

symmetry on the ¹⁸³W NMR time scale. The integrated intensities are in accord with the presence of two tungsten belts consisting of six WO₆ octahedra each and a tungsten cap of three WO₆ octahedra.

On the basis of our previous characterization^{10,11} of heteropolyoxoanion-supported complexes employing $P_2W_{15}Nb_3O_{62}^{9-}$, and given the ¹⁸³W NMR data indicating a $C_{3\nu}$ (pseudo) symmetry structure for 2, the solution structure depicted in Figure 6 is proposed, one that enjoys considerable precedent¹⁰⁻¹² and is the simplest interpretation consistent with all the data.

Summary

The complexes $[(C_5Me_5)Rh^{-}P_2W_{15}Nb_3O_{62}]^{7-}$, 1, and $[(C_6H_6)-Ru^{-}P_2W_{15}Nb_3O_{62}]^{7-}$, 2, have been isolated in good yield and as their all- $[(n-C_4H_9)_4N]^+$ salt (for 1) or as complexes with mixed $[(n-C_4H_9)_4N]^+/Na^+$ cation composition (for 1 and 2). These inner-sphere, covalently bonded organometallic derivatives were characterized by IR, multinuclear NMR, and ultracentrifugation molecular-weight measurements. The results of ¹⁸³W NMR

Figure 6. Space-filling, static C_{3*} symmetry structure proposed for $\operatorname{Ru}(C_6H_6)^{2+}$ fragment supported on the "Nb₃O₉³⁻" face of P₂W₁₅Nb₃O₆₂⁹⁻ serving as a stereochemically rigid tripodal ligand. The open circles represent bridging tungsten oxygens (W₂O), while the black circles represent terminal tungsten oxygens (W₂O). Niobium bridging oxygens (Nb₂O) are depicted by hatched circles, whereas niobium terminal oxygens (NbO) are shown as gray circles.

spectroscopy are in accord with an overall $C_{3\nu}$ (pseudo) symmetry for these compounds in solution. A single-crystal X-ray structure analysis was successful for [(C₃Me₅)Rh·P₂W₁₅-Nb₃O₆₂]⁷⁻, thereby providing the first X-ray diffraction study of a Dawson-type beteropolyoxoanion-supported complex.

Experimental Section

Materials. All commercially obtained compounds were reagent grade unless otherwise specified, and the following were used as received: ethanol (Baker), 1,3-cyclohexadiene (Aldrich), "RuCl₃xH₂O" $(x = 0 - 1)^{20}$ (Aldrich), NaBF₄ (Aldrich), AgBF₄ (Aldrich), 4,7,13,16, 21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane [Kryptofix 2.2.2.] (Aldrich), CaH₂ (Aldrich), C₅Me₅H (Aldrich), RhCl₃: xH_2O (x = 2-3) (Aldrich), Dowex ion exchange resins (Aldrich), and K₂CO₃ (Baker). Acetonitrile (Baker), ethyl acetate (Baker), diethyl ether (Baker), acetonitrile-d₃ (Cambridge Isotope Laboratories), and DMSO-d₆ (Cambridge Isotope Laboratories) all were used as received for the preparation of non-air-sensitive $[(C_5Me_5)RhP_2W_{15}Nb_3O_{62}]^7$. For the preparation of $[(C_6H_6)Ru P_2W_{15}Nb_3O_{62}]^{7-}$, acetonitrile (from CaH₂), acetone (from K₂CO₃), and ethyl acetate (from K₂CO₃) were refluxed under N₂ for at least 24 h and then distilled into glassware that had been thoroughly cleansed, dried at 250 °C, and allowed to cool under a dry N₂ flow. NMR solvents used with $[(C_6H_6)Ru P_2W_{15}Nb_3O_{62}]^7$ were degassed by three freeze-pump-thaw cycles. $[(n-C_4H_9)_4N]_9P_2W_{15}$ -Nb₃O₆₂ used in the synthesis of $[(C_5Me_3)RhP_2W_{15}Nb_3O_{62}]^{7-}$ was prepared as previously described;^{10d,13a} the purity was checked by ³¹P NMR for each preparation and was 95% or higher.

Instrumentation/Analytical Procedures. The synthesis of $[(C_5-Me_5)Rh\cdot P_2W_{15}Nb_3O_{62}]^{7-}$ was carried out, outside the drybox under N₂, as described in the experimental procedure (vide supra). The synthesis of $[(C_6H_6)Ru\cdot P_2W_{15}Nb_3O_{62}]^{7-}$ was carried out under an inert nitrogen atmosphere in a Vacuum Atmospheres drybox (≤ 1.0 ppm of oxygen as monitored by use of a Vacuum Atmospheres oxygen monitor, VAC Model AO 316-C). Elemental analyses were obtained from Mikroanalytisches Labor Pascher (Remagen, Germany). Infrared spectra were obtained on a Nicolet 5DX as KBr disks. All nuclear magnetic resonance (NMR) spectra were obtained as CD₃CN or DMSO-d₆ solutions in SpectraTech or Wilmad NMR tubes. ¹H NMR (300.15

⁽²⁰⁾ Commercially available "RuCl₃xH₂O" is known to be a complicated and variable mixture of mono- to polymetallic Ru^{11/1}V complexes. For a summary of references to that literature see: Randall, W. J.; Weakley, T. J. R.; Finke, R. G. *Inorg. Chem.* 1993, 32, 1068 and refs 19a-d and 20 therein.

MHz) were recorded in 5 mm o.d. tubes on a General Electric QE-300 spectrometer, at 21 °C and were referenced to the residual impurity in the deuterated solvent (¹H NMR). Chemical shifts are reported on the δ scale, and resonances downfield of (CH₃)₄Si (δ 0) are reported as positive. Spectral parameters for ¹H NMR: pulse width, 3.0 μ s; acquisition time, 1.36 s; repetition rate, 2.35 s; sweep width, ± 6024 Hz. All ¹H NMR spectra of [(*n*-C₄H₉)₄N]⁺ salts of polyoxometalates have the characteristic resonances (¹H NMR: δ 0.98, 1.42, 1.65, 3.18) associated with the tetrabutylammonium cation; hence these resonances are not reported for individual compounds.

³¹P NMR (146.16 MHz) and ¹⁸³W NMR (15.04 MHz) obtained at the University of Oregon were recorded on a Nicolet NT-360 NMR spectrometer equipped with an IBM-PC and a 16-bit digitizer board and the NMR software package Felix V1.1.^{18a} Spectra were recorded at 21 °C in 10 mm o.d. NMR tubes. ³¹P NMR spectra were referenced externally^{18b} to 85% H₃PO₄, and ¹⁸³W NMR spectra were referenced externally by the substitution method to 2 M Na₂WO₄/D₂O. Spectral parameters for ³¹P NMR: pulse width, 20 μ s; acquisition time, 1.638 s; repetition rate, 2.838 s; sweep width, ±5000 Hz. Spectral parameters for ¹⁸³W NMR: pulse width, 60 μ s; acquisition time, 0.8 s; repetition rate, 4.319 s; sweep width, $\pm 10\,000$ Hz. A 5 Hz (³¹P NMR), 5 Hz (183W NMR), or 0.5 Hz (1H NMR) exponential apodization of the FID was applied to all spectra but was removed from any line widths reported herein. More recently, ³¹P and ¹⁸³W NMR spectra were collected at Colorado State University (CSU) on Bruker 300 (³¹P) and Bruker AM500 (183W) NMR instruments employing 5 mm (31P) or 10 mm (183W) o.d. NMR tubes. Spectral parameters differ from those listed above and are as follows. ³¹P NMR (121.50 MHz; in 5 mm o.d. NMR tubes^{18b}): pulse width, 5 μ s; acquisition time, 819 ms; sweep width, ±20 000 Hz. ¹⁸³W NMR (20.838 MHz; in 10 mm o.d. NMR tubes): pulse width, 30 μ s; acquisition time, 1114 ms; sweep width, ±14 705 Hz. A 2 Hz (³¹P NMR) or 10 Hz (¹⁸³W NMR) exponential apodization of the FID was used on all spectra but was removed for any line widths reported herein. Spectra collected at CSU are marked as such. ¹⁷O NMR spectra were collected as detailed elsewhere.^{11e}

GLC measurements were carried out using a Apiezon grease column of 2 m length and a Shimadzu GC-8APT GC instrument.

Molecular-weight data were collected as previously described by the sedimentation equilibrium method.^{10d,i} All molecular weights are weight-average molecular weights, \bar{M}_w . Molecular weight measurements were obtained in CH₃CN/0.1 M [(*n*-C₄H₉)₄N]PF₆ and were monitored at 335 nm, a wavelength characteristic of both the polyoxoanion and the organometallic groups.

Preparations. [(C₅Me₅)RhCl₂]₂ was prepared from C₅Me₅H and RhCl₃·xH₂O in refluxing solvent according to the literature.^{10d,19} ⁻¹H NMR (25 °C, 4.05 M, DMSO-*d*₆) δ (multiplicity): 1.61 (s). Lit. δ (in CDCl₃):¹⁹ 1.60 (s). In latter preparations of **1**, [(C₅Me₅)RhCl₂]₂ obtained commercially (Strem) was used; this material was found to be satisfactory as judged by ¹H NMR and partial elemental analysis. Anal. Calc (found): C, 38.87 (38.8); H, 5.16 (4.89).

[**Ru**(C₆H₆)Cl₂]₂ was prepared from "RuCl₃·xH₂O"²⁰ and 1,3-cyclohexadiene according to the literature.²¹ ¹H (25 °C, 4.05 M, DMSOd₆) δ (multiplicity): 5.94 (s). Lit. δ (in DMSO-d₆):²¹ 5.93 (s). ¹H (25 °C, 4.05 M, CD₃CN) δ (multiplicity): 5.69 (s). Lit. δ (in CD₃CN):²¹ 5.70. Anal. Calc (found): C, 28.82 (28.84); H, 2.42 (2.45); Ru, 40.41 (38.5).

 $[(n-C_4H_9)_4N]_7[(C_5Me_5)Rh\cdotP_2W_{15}Nb_3O_{62}], 1.^{22} [(n-C_4H_9)_4N]_9P_2W_{15}-Nb_3O_{62} (4.74 g, 0.756 mmol) was placed in a 100 mL three-neck round$ $bottom flask and dissolved in 50 mL of dry CH_3CN (dried over 3 Å$ molecular sieves). Using a long needle, N₂ was passed through the $resulting solution for 30 min. Separately, in a 20 mL beaker [(C₅-Me₅)RhCl₂]₂ (0.234 g, 0.379 mmol) was slurried in 10 mL of CH_3CN.$ Solid AgBF₄²³ (0.294 g, 1.51 mmol) was added to the slurry, causingthe immediate formation of an AgCl precipitate. The mixture wasstirred for 10 min (magnetic stir bar) and filtered through a medium $glass frit directly into the clear, stirred solution of [(n-C_4H_9)_4N]_9P_2W_{15}-Nb_3O_{62}$. The precipitate on the glass frit was washed with 1–2 mL of CH₃CN using a pipet, and the washings were quantitatively transferred to the heteropolyoxoanion solution. Upon introduction of the *in situ* generated [(C₅Me₅)Rh(CH₃CN)₃]BF₄ solution, the color of the heteropolytungstate solution changed from clear to red. The resulting solution was refluxed for 1 h under a N2 stream (with the N2 inlet needle being above the solution). After cooling to room temperature, the solution was rotavapped to dryness and the remaining solid was dried in vacuum overnight. The solid, still in the round-bottom flask, was dissolved in ca. 2.5-4 mL of CH₃CN, and the solution was then transferred to a 500 mL beaker; the solution at this point of the preparation was deep red. After slow addition of 400 mL of EtOAc $([(n-C_4H_9)_4N]BF_4$ is soluble in EtOAc whereas the heteropolyoxoanion complex is not),²⁴ a red powder composed of large particles precipitated initially, but later an orange powder of smaller particles precipitated. This suspension was stirred in an ice bath for 30 min, after which the precipitate was collected on a medium glass frit. The solid was washed three times with 40 mL of ether, dried on the glass frit by suction, and further dried overnight under reduced pressure. The reprecipitation was repeated twice more, and the product was then dried under vacuum for several hours. Yield: 2.30 g (0.38 mmol, 50%), orange powder.

Anal. Calc for $C_{128}H_{276}N_{10}RhP_2W_{15}Nb_3O_{62}$ (found): C, 25.00 (25.50); H, 4.52 (4.67); N, 2.28 (1.78); Rh, 1.67 (1.72); P, 1.01 (0.94); W, 44.85 (44.73); Nb, 4.53 (4.40); O, 16.1 (17.2); total, 100 (100.9). The elemental analysis and TGA (and GLC and NMR) data require an adduct with three acetonitriles, $[(n-C_4H_9)_4N]_7[(C_5Me_5)Rh\cdotP_2W_{15}-Nb_3O_{62}]^*3CH_3CN$.

Solvate analysis: GLC measurements were carried out using a Apiezon L column of 2 m length, at 130 °C, and using a Shimadzu GC-8APT GLC; the results indicated between 3 and 4 CH₃CN of solvation. TG/DTA: weight loss of 2.4% (calc for 3 CH₃CN, 2.0%) below 250 °C. Sample decomposition occurred at 227.8 °C. ¹H NMR showed a CH₃CN resonance at δ 2.1 ppm in DMSO-*d*₆, within error of the δ 2.07 ppm found for authentic CH₃CN in DMSO-*d*₆.

IR (KBr disk, cm⁻¹) (polyoxometalate region): 1085 (vs), 938 (s), 904 (m), 883 (m), 773 (br, vs), 531 (m).

- (22) The instruments and parameters used in acquiring physical data for 1 differ from those listed in the Experimental Section, since this work was performed at Kanagawa University. The crucial parameters and details are as follows: Elemental analyses were obtained from Mikroanalytisches Labor Pascher (Remagen, Germany). Infrared spectra were obtained on a Nicolet 510 spectrometer as KBr disks at room temperature. ¹H NMR (399.65 MHz), ¹³C NMR (100.40 MHz), and ³¹P NMR (161.70 MHz) was recorded in 5 mm o.d tubes, while ¹⁸³W NMR (16.5 MHz) was recorded in 10 mm o.d. tubes, all on a JEOL JNM-EX 400 FT-NMR spectrometer equipped with a JEOL EX-400 NMR data processing system. ¹H and ¹³C NMR spectra were referenced to an internal standard of Si(CH₃)₄ (TMS). Chemical shifts are reported on the δ scale, and resonances downfield of TMS (δ 0) were recorded as positive. Spectral parameters for ¹H NMR: pulse width 6.0 μ s; acquisition time 2.05 s; repetition rate 7.00 s; sweep width ± 4000 Hz. Spectral parameters for ¹³C NMR: pulse width 4.7 μ s; acquisition time 0.54 s; repetition rate 3.00 s; sweep width ± 15060 Hz. ³¹P NMR spectra were referenced externally^{18b} to 25% H₃PO₄ sealed in a capillary. Chemical shifts on the δ scale are reported as negative for resonances upfield of H₃PO₄ (δ 0). Spectral parameters for ³¹P NMR: pulse width 6.0 μ s; acquisition time 0.41 s; repetition rate 1.61 s; sweep width ±20 000 Hz. ¹⁸³W NMR (16.50 MHz) were recorded in 10 mm o.d. tubes and referenced to an external standard of saturated Na₂WO₄/D₂O solution by the substitution method. Chemical shifts on the δ scale are reported as negative for resonances upfield of Na₂WO₄ (δ 0). Spectral parameters for ¹⁸³W NMR: pulse width 24.0 μ s; acquisition time 1.64 s; repetition rate 2.84 s; sweep width ± 2500 Hz. A 0.25 Hz (³¹P NMR), 0.50 Hz (¹⁸³W NMR), 0.25 Hz (¹H NMR), or 1.84 Hz (¹³C NMR) exponential apodization of the FID was applied to all spectra but was removed from any line widths reported herein. Thermogravimetric (TG) and differential thermal analyses (DTA) were acquired using a Seiko SSC 5000 TG/DTA 300. TG/DTA were run with a temperature ramp of 10.0 °C/min between 20 and 500 °C
- (23) The AgBF₄ (Wako Pure Chemicals) used in this synthesis was stored in *n*-hexane; before use, the solvent was evaporated and the AgBF₄ was thoroughly dried in vacuo.
- was thoroughly dried in vacuo.
 (24) (a) In the case^{24b} of [(C₅Me₅)Rh·SiW₉Nb₃O₄₀]⁵⁻, the removal of [(n-C₄H₉)₄N]BF₄ could be monitored in the IR (KBr) by following the disappearance of the ~1084 cm⁻¹ band (due to BF₄⁻). However, this approach was not feasible for [(C₅Me₅)Rh·P₂W₁₅Nb₃O₆₂]⁷⁻ as the BF₄⁻⁻ band is obscured by intense P-O stretching bands of the Dawson-type heteropolyoxoanion P₂W₁₅Nb₃O₆₂⁹⁻. (b) Finke, R. G.; Nomiya, K.; Green, C. A.; Droege, M. W. In *Inorganic Syntheses*; Grimes, R. N., Ed.; Wiley & Sons: New York, 1992; Vol. 29, p 239.

 ^{(21) (}a) Zelonka, R. A.; Baird, M. C. Can. J. Chem. 1972, 50, 3063. (b) Bennett, M. A.; Smith, A. K. J. Chem. Soc., Dalton Trans. 1974, 233.

 ^{31}P NMR (22 °C, 60 mM, CD₃CN) δ (no. of P, $\Delta\nu_{1/2}\text{):}-8.2$ (1.0, 3.2 \pm 1.2 Hz), -13.9 (1.1, 3.2 \pm 1.2 Hz). 18b ^{31}P NMR (22 °C, 60 mM, DMSO-d_6) δ (no. of P, $\Delta\nu_{1/2}$) (Figure 2): -8.4 (1.0, 4.8 \pm 1.2 Hz), -14.2 (1.1, 4.4 \pm 1.2 Hz). 18b

 183 W NMR (22 °C, 100 mM, DMSO-d₆) δ (no. of W, $\Delta\nu_{1/2}$): -130.6 (3.0, 15.4 \pm 0.3 Hz), -153.0 (5.7, 12.1 \pm 0.3 Hz), -185.5 (6.0, 10.8 \pm 0.3Hz). No $^2J_{W-O-W}$ couplings are observed after 100 000 scans.

¹H NMR (23 °C, 60 mM, DMSO- d_6) δ : 1.84 (s).

¹³C{¹H} NMR (24 °C, 60 mM, CD₃CN) δ: 95.08, 9.33. ¹³C{¹H} NMR (24 °C, 60 mM, DMSO-*d*₆) δ: 93.31, 8.54.

 $[(n-C_4H_9)_4N]_{5.5}Na_{1.5}[(C_5Me_5)Rh·P_2W_{15}Nb_3O_{62}]$. The synthesis and characterization of this material yield, in even our best efforts to date, a product that is somewhat less pure by ³¹P NMR and elemental analysis than the analytically pure all- $[(n-C_4H_9)_4N]$ salt of 1 (*vide supra*). Hence, this particular synthesis is reported only in the supplementary material for the interested reader.

Control Experiment Probing the Detectability of [(C₅Me₅)Rh-(CD₃CN)₃]²⁺ in a Solution of 1. In a control experiment, 50 mg (0.0088 mmol) of the mixed $Na^{+/[(n-C_4H_9)_4N]^+}$ salt of 1 was dissolved in 1 mL of CD₃CN. In a separate disposable test tube, [(C₅Me₅)RhCl₂]₂ (0.010 g, 0.0162 mmol) was slurried in 2 mL of CD₃CN. Solid AgBF₄ (0.013 g, 0.067 mmol) was added to the slurry, causing the immediate formation of an AgCl precipitate. The mixture was stirred for 30 min (magnetic stir bar) and filtered through Whatman No. 2 filter paper. The filter paper was washed with 1 mL of CD₃CN, and the washings were combined with the filtrate. The volume of the filtrate was then adjusted to 3.7 mL by addition of CD₃CN. Of this solution, containing $[(C_5Me_5)Rh(CD_3CN)_3]^{2+}$, 0.1 mL of $[(C_5Me_5)Rh(CD_3CN)_3]^{2+}$ (0.000 88 mmol; 10% relative to 1) was added to the heteropolyoxoanion solution. A ¹H NMR spectrum showed a new, separate resonance at δ 1.87, attributable to free $[(C_5Me_5)Rh(CD_3CN)_3]^{2+}$, in addition to the normal ¹H NMR resonance (δ 1.82) identified with the C₅Me₅ ligand in $[(C_5Me_5)RhP_2W_{15}Nb_3O_{62}]^{7-}$. This experiment demonstrates (i) that no free [(C₅Me₅)Rh(CD₃CN)₃]²⁺ has dissociated from 1 in CD₃CN (as, otherwise, it would have been detected) and (ii) that free [(C5- Me_5)Rh(CD₃CN)₃]²⁺ and the (C₅Me₅)Rh²⁺ in 1 are not in rapid exchange on the 'H NMR time scale.

Experiments Demonstrating Non-Ion-Exchangeability of the Supported [(C5Me5)Rh]²⁺ in 1. Results of ion (non)-exchange experiments have been reported earlier^{10d} but were independently repeated for the present account (i.e., using isolated 1). Twenty-five grams of macroreticular, strongly acidic resin Dowex $50 \times 8-400$ (H⁺ form; PSO₃⁻H⁺) was placed in a beaker together with ca. 100 mL of water. The resin was swirled for ca. 1 min, followed by decanting the water. This process was repeated until the aqueous phase was clear and colorless. The resin was then packed onto a 50 cm \times 2.5 cm (length \times diameter) column. A large excess, ca. 30 mL, of 40% [(n- $C_4H_9)_4N$ $^+OH^-/H_2O$ was diluted by ca. 1 part in 10 with distilled water, and the solution was then passed dropwise through the column. When the eluant tested basic with litmus paper, distilled water was passed through the column until the eluant tested neutral with litmus paper. The resulting $PSO_3^{-}[(n-C_4H_9)_4N]^+$ column was then washed with five 100-mL portions of acetonitrile. A solution of ca. 0.5 g of the mixed $Na^{+}/[(n-C_4H_9)_4N]^{+}$ salt of 1 in 10 mL of CH₃CN was passed dropwise through the column. This colored solution passed through the column with no apparent retention, indicating that the $[(C_5Me_5)Rh]^{2+}$ group remains firmly attached to 1. A previous control experiment demonstrates that authentic, free $[(C_5Me_5)Rh(CH_3CN)_3]^{2+}\,(BF_4^-)_2$ sticks tightly to, and does not readily elute from, a PSO₃^{-[(n-C₄H₉)₄N]⁺ anion-} exchange column (see p 1702 in ref 10d).

An anion exchange column of identical size was packed with strongly basic resin, Dowex 1 \times 2–400 (Cl⁻ form; PNR₃+Cl⁻), and was washed with acetonitrile. A sample of 1 was passed through this column of anion exchange resin as described above for the cation exchange resin. All of the colored sample was retained on the resin in the upper half of the column, indicating that the cationic [(C₅Me₅)Rh]²⁺ group had been rendered anionic by its tight binding to P₂W₁₅Nb₃O₆₂⁹⁻ in 1.

Single-Crystal X-ray Structure of 1. Yellow prismatic crystals were grown by vapor diffusion of acetone into an acetonitrile solution of 1 over a period of 6 months. A partial elemental analysis of crystalline material of composition $[(n-C_4H_9)_4N]_6Na[(C_5Me_5)Rh-P_2W_{15}-Nb_3O_{62}]$ ·10CH₃CN·10Me₂CO (as determined by single-crystal X-ray

crystallographic structural analysis; vide infra) gave the following results. Anal. Calc (found for the single crystals): C, 27.56 (26.12); H, 4.76 (5.03); N, 3.30 (1.82); Na, 0.34 (0.22); Rh, 1.51 (1.41); P, 0.91 (0.95). Several crystals were transferred from solution to Apiezon grease and then into Lindemann glass capillaries which were flamesealed. They diffracted weakly with considerable background, although the peak profiles were acceptable. The orientation matrix and cell dimensions for the crystal selected were obtained initially from 25 reflections in the range $10.9^{\circ} \le 2 \Theta \le 13.5^{\circ}$, and improved values were then obtained from 25 relatively strong reflections in the range $21^{\circ} \leq 2\Theta \leq 30^{\circ}$. Measurement of the intensities of equivalent reflections showed the Laue symmetry to be 6/m. A summary of crystal data is given in Table 1, together with the residuals. A complete table containing particulars of data collection and structure refinement is included in the supplementary material. The Laue symmetry, the only systematic absence (00l for l odd), and the centric distribution of intensities indicated that the space group was $P6_3/m$. The intensities of three standard reflections fell by ca. 14% during data collection (48 h). A decay correction was therefore applied.

The three independent W atoms were located by use of direct methods (SHELXS²⁵) at positions consistent with the stronger vector peaks of the Patterson function. The Rh, P, and O atoms of the anion were located in successive difference syntheses. The crystallographic site symmetry of the anion was 3/m. The Rh atom lies on the 3-fold axis of the $P_2W_{15}Nb_3O_{62}$ unit. The only possible element of symmetry of the anion was therefore a 3-fold axis (if the C5Me5 group was disregarded), so the anion was taken to have two equally-weighted orientations related by the crystallographic mirror plane. A model refined satisfactorily in which the Rh site on the 3-fold axis was halfoccupied and the cap heavy atom site [W(3)] was occupied by a composite atom Nb_{0.5}W_{0.5}. When the starting point was an ordered set of atoms, $RhNb_3W_{15}$, in space group $P6_3$ the less unsatisfactory model had the Rh on the Nb₃ rather than on the W₃ cap, but not all the oxygen atoms could be located; least-squares refinement showed many strong correlations between corresponding parameters of atoms that would be equivalent in $P6_3/m$, and the thermal parameters for some pairs of atoms (e.g., the P atoms) became improbably different. These observations were taken to mean that the centrosymmetric but disordered model was the correct one. Ab initio structure solution in space group $P\bar{3}$ (*i.e.*, with the crystallographic mirror plane omitted but the inversion center retained) showed the anion at the same position with noncrystallographic mirror symmetry about the plane z = 0.25and with the same disorder of the Rh and Nb atoms. An empirical absorption correction (DIFABS26) was applied after convergence of isotropic refinement. The refinement was continued with anisotropic parameters for the heavy atoms. A difference synthesis showed numerous weak peaks in the interanion spaces. These comprised most of each of two independent $[(n-C_4H_9)_4N]^+$ ions, in one of which the N atom and two n-C₄H₉ groups lay on a crystallographic mirror plane. Also, two peaks at 2.14 and 2.20 Å from Rh appeared to be fractional carbon atoms of the disordered C5 ring. Attempts to refine the C and N atoms with various combinations of site occupancy factors led to some large B_{iso} values and poor bond lengths and to only slight reductions in the residuals. Consequently, these atoms were all fixed at their original positions in the last cycles of refinement with B_{iso} set at 8 Å²⁶ and with an S.O.F. of ¹/₃ for the C atoms on Rh. The TEXSAN program suite,27 incorporating scattering factors from ref 28, was used in all calculations.

The anion lies at a site of crystallographic point symmetry $3/m (C_{3h})$ in two equally-related orientations related by the mirror plane. The Rh atom is constrained to lie on the crystallographic 3-fold axis, although a small apparent anisotropy of motion (rms amplitude 0.21 Å parallel to the axis and 0.31 Å normal to it) may imply that it is actually disordered over three sites close to the axis. It is bonded to three oxygen atoms [Rh-O 2.06(3) Å] which are each also shared between two composite M (W_{0.5}Nb_{0.5}) atoms of the capping set of three edge-sharing MO₆ octahedra (note that the disorder makes it uncertain, on the basis of the crystallography alone, whether the Rh is actually

⁽²⁵⁾ Sheldrick, G. M. In Crystallographic Computing 3; Sheldrick, G. M., Kruger, C., Goddard, R., Eds.; Oxford University Press: Oxford, England, 1985; pp 175-189.

⁽²⁶⁾ Walker, N.; Stuart, D. Acta Crystallogr., Sect. C 1983, 39, 158.

attached to a Nb3 or to a W3 cap). The forcing of the 3-fold crystal axis on the 5-fold symmetry of the C5Me5 group leads to the prediction that the ring atoms will appear as one-third atoms 24° apart, and so will the Me carbons; because of the additional end-for-end disorder of the anion, it is not surprising that even the ring atoms are not clearly defined, although two peaks lying very nearly in the same plane normal to the C_3 axis could be distinguished (see above). This situation is in contrast with that found for $[(n-C_4H_9)_4N]_2[(C_5Me_5)Rh\cdotNb_2W_4O_{19}]$, space group P1, where the C₅Me₅ ligand had a single, well-defined location and orientation.²⁹ As regards the rest of the anion, the heavy atom frameworks of the two orientations coincide closely and so do the sets of oxygen and of P atoms. This seems clear from the small apparent anisotropy of the W atoms, and from the close similarity of W...W distances to those in the $P_2W_{18}O_{62}^{6-}$ and $P_2Nb_3W_{15}O_{62}^{9-}$ anions.^{30,31} On the assumption of $3m(C_{3\nu})$ symmetry for the anion, corresponding bond lengths differ from the mean values by around 1σ . The coincidence of like atoms in the two orientations is surprising in view of the presence of the [(C₅Me₅)Rh]²⁺ group on one cap only and seems to be associated with the presence of a large amount of highly disordered (non-hydrogen bonding) solvent³² and the preponderance of noncoordinating $[(n-C_4H_9)_4N]^+$ rather than Na⁺ cations (supplementary material, Figure G).

¹⁷O NMR Studies and Attempted Synthesis of ¹⁷O-Enriched [(n-C4H9)4N]7[(C5Me5)Rh·P2W15Nb317O6O56] Starting from [(n-C4H9)4- $N_{9-x}H_{x}P_{2}W_{15}Nb_{3}^{17}O_{6}O_{56}$. ¹⁷O-enriched [(*n*-C₄H₉)₄N]_{9-x}H_xP₂W₁₅-Nb3¹⁷O6O56 (1.0 g, 0.159 mmol), prepared as described elsewhere,^{11e} was placed in a 50 mL round-bottom flask (equipped with a magnetic stir bar) and dissolved in 3 mL of CH₃CN, resulting in a clear solution. In a separate disposable test tube, [(C5Me5)RhCl2]2 (0.0491 g, 0.0795 mmol) was slurried in 4 mL of CH₃CN. Solid AgBF₄ (0.062 g, 0.318 mmol) was added to the slurry, causing the immediate formation of an AgC1 precipitate. The mixture was stirred for 30 min (magnetic stir bar) and filtered through Whatman No. 2 filter paper, and the filtrate was then directly introduced into the clear, stirred solution of [(n- $C_4H_9)_4N]_{(9-x)}H_xP_2W_{15}Nb_3^{17}O_6O_{56}$. Upon introduction of the in situ generated [(C5Me5)Rh(CH3CN)3]BF4 solution, the color of the heteropolytungstate solution changed from clear to orange-red. After being refluxed for 1 h, the solution was evacuated to dryness, and the remaining solid was dried under vacuum overnight. The solid was dissolved in 2 mL of CD₃CN, and the solution was transferred into an NMR tube equipped with a J. Young airtight valve and placed in the NMR probe. (170 NMR, 48.967 MHz, CD₃CN, 22 °C) (supplementary material, Figure F) δ : 761, 520, 186. The observed ¹⁷O NMR spectrum is characteristic^{11e} of the starting material $[(n-C_4H_9)_4N]_{(9-r)}H_xP_2W_{15}$ Nb₃¹⁷O₆O₅₆, indicating that little to no reaction of the organometallic fragment [(C5Me5)Rh(CH3CN)3]2+ with the support-heteropolyoxoanion $H_x P_2 W_{15} Nb_3^{17} O_6 O_{56}^{9-x}$ has occurred. This failure to yield the supported ¹⁷O-enriched heteropolyoxoanion [(C₅Me₅)Rh·P₂W₁₅Nb₃¹⁷O₆O₅₆]⁷⁻ is not surprising, given the well-documented11e protonation of the bridgingoxygen binding sites (Nb₂O-H⁺, δ 186) in the ¹⁷O-enriched starting material $[(n-C_4H_9)_4N]_{(9-x)}H_xP_2W_{15}Nb_3^{17}O_6O_{56}$, effectively preventing binding of the organometallic moiety to the support. [However, a ³¹P NMR spectrum (supplementary material, Figure F) of this reaction mixture showed, in addition to two major resonances at δ -7.2 and

- (27) TEXSAN: TEXRAY Program for Structure Analysis, Version 5.0; Molecular Structure Corp.: 3200A Research Forest Drive, The Woodlands, TX 77381, 1989.
- (28) Cromer, D. T.; Waber, J. T. In International Tables for X-Ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 71, 148.
- (29) Besecker, C. J.; Day, V. W.; Klemperer, W. G.; Thompson, M. R. J. Am. Chem. Soc. 1984, 106, 4125. [(C5Me5)Rh·Nb2W4O19]²⁻ lacks any crystallographically-required symmetry and contains a disordered M₆O₁₉ core. Here, the [(C₅Me₅)Rh]²⁺ group has no preference as to the point of attachment to the polyoxoanion, and the orientation of the whole anion is determined by packing considerations.
- (30) D'Amour, H. Acta Crystallogr., Sect. B 1976, 32, 729.
 (31) Finke, R. G.; Lyon, D. K.; Nomiya, K.; Weakley, T. J. R. Acta Crystallogr., Sect. C 1990, C46, 1592.
- (32) (a) Countercation and lattice solvate disorder are common in heteropolyoxoanion structure determinations; often, some or even all of the cations or lattice solvates cannot be located by X-ray structure analysis.^{32b} (b) Weakley, T. J. R.; Finke, R. G. Inorg. Chem. 1990, 29, 1235. See footnote 13 and references therein.

-14.2 that are characteristic of P2W15Nb3O629-, two smaller resonances at $\delta - 8.2$ and -13.9. These latter two signals indicate that indeed some [(C₅Me₅)Rh·P₂W₁₅Nb₃¹⁷O₆O₅₆]⁷⁻ has formed during the course of the reaction. The extent of this incomplete reaction is, however, insufficient to allow for any meaningful accumulation of ¹⁷O NMR data.] An experiment with just enough [(n-C4H9)4N]OH added to remove the residual H⁺ attached to $H_x P_2 W_{15} N b_3^{17} O_6 O_{56}^{x-9}$ is an important experiment, especially in light of the results presented herein and our early problems in this work with low Rh and Ru analyses. However, this experiment is being pursued as part of other studies.³³

In summary, this important control experiment shows that the synthesis of 1 (and, by inference, presumably other supportedorganometallic complexes of P2W15Nb3O629-) is very sensitive to protonation at the Nb₂O bridging oxygens of the "Nb₃O₉³⁻" minisurface support site.

 $[(n-C_4H_9)_4N]_{4.5}Na_{2.5}[(C_6H_6)Ru P_2W_{15}Nb_3O_{62}], 2.$ The preparation described herein yields a complex with mixed countercation composition from which the contaminating $[(n-C_4H_9)_4N]^+BF_4^-$ is removed by repeated reprecipitation with ethyl acetate. During the course of this study, we discovered that the use of fully deprotanated $P_2W_{15}Nb_3O_{62}^{9-}$, minimizing the presence of protonated $H_x P_2 W_{15} Nb_3 O_{62}^{x-9}$, is the key to obtaining analytically pure 2. The fully deprotanated P2W15Nb3O629 starting material was synthesized by an even further refined procedure,33 when compared to our previously reported procedure, 10d,13a and will be reported elsewhere.33

In the two elemental analyses reported at the end of this section, fully deprotonated $P_2W_{15}Nb_3O_{62}^{9-}$ was employed as the starting material for the first data set reported; the second data set was obtained using P2W15Nb3O629- prepared by our previoulsy published procedure. 10d, 13a In the drybox, $[(n-C_4H_9)_4N]_9P_2W_{15}Nb_3O_{62}$ (13.1 g, 2.09 mmol) was placed in a 100 mL round-bottom flask and dissolved in 40 mL of CH₃CN. If this solution was cloudy, it was filtered through a folded filter paper (Whatman No. 2). The clear filtrate was collected in a 200 mL round-bottom flask equipped with a stir bar. The filter paper was washed with a small amount of CH₃CN, and the washings were also combined with the above filtrate. The combined filtrate was stirred. By this step, a total of ca. 50 mL of CH₃CN was used. Approximately 40 mL of CH₃CN was placed in a separate graduated cylinder, a portion (ca. 15 mL), of which was used as a solvent for the reaction of [Ru-(C₆H₆)Cl₂]₂ with 4 equiv of AgBF₄. About 15 mL of CH₃CN was put into a test tube containing [Ru(C6H6)Cl2]2 (0.5255 g, 1.05 mmol) and the resulting reddish-green suspension was stirred. To this suspension was added a solution of AgBF₄ (0.8180 g, 4.21 mmol) dissolved in a few milliliters of CH₃CN, resulting in the immediate formation of an AgCl precipitate. The white precipitate of AgCl was removed by filtration with a folded filter paper, and the filtrate was directly introduced into the clear, well-stirred solution of $[(n-C_4H_9)_4N]_9P_2W_{15}$ Nb₃O₆₂. [The AgCl precipitate on the filter was washed several times with small amounts of CH3CN (a total of ca. 20 mL of CH3CN was used for this washing), and the washings were also added to the above stirred, light red solution.] After this solution was stirred for 15 min, solid NaBF₄ (0.6892 g, 6.28 mmol) was added. Stirring was then continued until all of the $NaBF_4$ had dissolved. The resulting reddish solution was filtered through a folded filter paper and the filtrate was collected in a 200 mL round-bottom flask. After being refluxed for 1 h, this solution was rotavapped to dryness. The residual orange-yellow solid (which contains [(C₆H₆)Ru·P₂W₁₅Nb₃O₆₂]⁷⁻ and 4 equiv of [(n-C₄H₉)₄N]BF₄) was dissolved in ca. 10 mL of CH₃CN, and the solution was transferred to a 600 mL beaker using a polyethylene pipet. To this solution was added 400 mL of EtOAc with slow stirring using a magnetic stir bar $([(n-C_4H_9)_4N]BF_4$ is soluble in EtOAc whereas the heteropolyoxoanion complex is not), after which the stirring was continued for 30 min. The orange-yellow powder which precipitated was collected on a medium glass frit and washed twice with 30 mL of

⁽³³⁾ Weiner, H.; Finke R. G. Manuscript in preparation. One key improvement (as it relates to the present work) is that great care is being taken to completely remove all protons present in the precursor (nominal formula $[(n-C_4H_9)_4N]_{12}H_4P_4W_{30}Nb_6O_{123})$ and to completely deprotonate any $H_xP_2W_{15}Nb_3O_{62}^{9-x}$ present (using a phenolphtalein end-point titration) which otherwise interferes (as shown herein and elsewhere^{11f,13b}) with the binding of the organometallic moiety, $[(C_6H_6-$ Ru]²⁺, to the heteropolyoxoanion-support, P₂W₁₅Nb₃O₆₂⁹⁻

ether. The filtrate was light yellow and cloudy. The reprecipitation was repeated twice more, and the product was then dried under vacuum at room temperature for several hours. Yield: 8.4 g (1.6 mmol, 76%), red-orange powder. Note that this preparation has been repeated independently more than 10 times by two of us, primarily as we sought to solve a 0.93% low Ru analysis problem in our earlier preparations. The elemental analysis and the ³¹P NMR data below are for our most recent and best syntheses (as detailed above).

Anal. Calc (found) using fully deprotonated³³ $P_2W_{15}Nb_3O_{62}^{9-}$ [second analysis for an independent preparation, *but* using $P_2W_{15}Nb_3O_{62}^{9-}$ prepared by our previously published procedure,^{10d,13a} results which show a reproducible problem with a low Ru analysis]: C, 17.25 (17.31) [17.28]; H, 3.12 (3.23) [3.27]; N, 1.30 (1.44) [1.42]; Na, 1.07 (1.09) [1.24]; Ru, 1.87 (1.84) [0.94]; P, 1.14 (1.09) [1.14]; W, 50.6 (49.1) [50.8]; Nb, 5.14 (5.82) [5.06]; O, 18.3 (18.8) [17.0]; total, 100.0 (99.61) [98.17].

Molecular weight (sedimentation-equilibrium method, 1×10^{-5} M 2 in 0.1 M [(*n*-C₄H₉)₄N]PF₆/CH₃CN (supplementary material, Figure C), \bar{M}_{w} : calc for 2, 5418; found, 6960 ± 600.

IR (KBr disk, cm⁻¹) (supplementary material, Figure D) (polyoxometalate region): 1088, 1049, 1010, 947, 915, 896, 768. The IR resonances for $[(C_6H_6)RuP_2W_{15}Nb_3O_{62}]^{7-}$ (in comparison to $P_2W_{18}O_{62}\delta^{-})^{34}$ at 947 (960), 915 (912), and 768 (780) cm⁻¹ suggest (but do not prove) the assignment of these bands as follows: the asymmetric stretching vibrations of the W–O_{terminal} bonds (945 cm⁻¹), the W–O–W bridges between corner-sharing octahedra (913 cm⁻¹), and the W–O–W bridges between edge-sharing octahedra (773 cm⁻¹). Resonances at 1088 (1090), 1049 (1022), and 1010 (975) cm⁻¹ are attributed to PO₄ stretching vibrations.

³¹P NMR (25 °C, 44.5 mM, CD₃CN, with 3 equiv of Kryptofix 2.2.2) δ (no. of P, $\Delta v_{1/2}$) (Figure 4): -7.7 (1.0 ± 0.1, 3.0 ± 0.8 Hz), -13.3 (1.0 ± 0.1, 3.0 ± 0.8 Hz).^{18b} ¹⁸³W NMR (25 °C, 89.0 mM, CD₃CN, with 3 equiv of Kryptofix 2.2.2.) δ (no. of W, $\Delta v_{1/2}$) (Figure 5): -125.4 (3.0 ± 0.2, 11.1 ± 0.5 Hz), -148.0 (6.0 ± 0.3, 10.4 ± 0.5 Hz), -180.2 (6.0 ± 0.3, 10.9 ± 0.5 Hz). ¹H NMR (25 °C, 15.7 mM, CD₃CN) δ: 5.99 (s).

Experimental Variations in the Synthesis of 2. In three control experiments which lead to the improved synthetic procedure reported above (specifically, experiments designed to improve the low percentruthenium obtained in early preparations), several parameters in the synthesis and isolation procedure (vide supra) were examined and varied. Specifically, these were as follows (note that (i) and (ii) were performed with P2W15Nb3O629- prepared by our published procedure^{10d,13a}): (i) addition of an excess of $[(C_6H_6Ru(CH_3CN)_3]^{2+}$ (1.3 equiv, 30% excess) to see if this improved the early low ruthenium analyses (supplementary material, Figure J); (ii) prolonged heating under reflux (20 h instead of 2 h) to test for substitution inertness of d⁶ Ru^{II} as a possible cause (supplementary material, Figure J); and (iii) use of starting material, [(n-C₄H₉)₄N]₉P₂W₁₅Nb₃O₆₂, that has been prepared by a new and improved procedure (supplementary material, Figure J) to rule out residual protonation of the support polyoxoanion H_xP₂- $W_{15}Nb_3O_{62}^{9-x}$.³³ These variation studies show that the addition of an excess of [(C₆H₆Ru(CH₃CN)₃]²⁺ or longer reflux times do not markedly improve the appearance of the ³¹P NMR product spectra in terms of impurities and unreacted P2W15Nb3O629- present. However, it was through these experiments that we discovered that the use of fully deprotonated $P_2W_{15}Nb_3O_{62}^{9-}$, minimizing the presence of protonated $H_x P_2 W_{15} N b_3 O_{62}^{x-9}$, is the key to obtaining analytically pure 2.³³ Using this fully deprotonated material, the ³¹P NMR of 2 shows the presence of approximately 6% unreacted $P_2W_{15}Nb_3O_{62}{}^{9-}$ (Figure 4) compared to typically 15-20% in all other previously attempted preparations.

Control Experiment Testing the Solubility of $[(C_5Me_5)Rh-(CH_3CN)_3]^{2+}$ and $[(C_6H_6)Ru(CH_3CN)_3]^{2+}$ in Ethyl Acetate/Acetonitrile. In order to test whether or not the low percent rhodium and percent ruthenium elemental analyses, obtained in early syntheses of the mixed $[(n-C_4H_9)_4N]^+/Na^+$ complexes of 1 and 2, were due to solubility of the organometallic fragments in the precipitating solvent mixture of ethyl acetate/acetonitrile (i.e., possibly due a putative dissociation of the organometallic fragments from 1 and 2, followed by their selective precipitation), the following control experiments were performed. In two separate experiments 80 mL of ethyl acetate was added to a solution of $[(C_5Me_5)Rh(CH_3CN)_3]^{2+}$ (0.16 M) and $[(C_6H_6)Ru(CH_3CN)_3]^{2+}$ (0.2 M) in 2 mL of acetonitrile. ($[(C_5Me_5)Rh(CH_3CN)_3]^{2+}$ and $[(C_6H_6)Ru(CH_3CN)_3]^{2+}$ were prepared by reaction of $[(C_5Me_5)RhCl_2]$ and $[(C_6H_6)Ru(CL_2]$ with AgBF₄ in acetonitrile, respectively.) No precipitate was formed upon addition of the ethyl acetate; hence, limited solubility of the organometallic fragments in a mixture of ethyl acetate/acetonitrile, which is used in the purification and isolation of 1 and 2, can be ruled out as the cause for the low percentage of rhodium and ruthenium in the elemental analysis (in the early syntheses of the mixed $[(n-C_4H_9)_4N]^+/Na^+$ complexes of 1 and 2). Restated, this control demonstrates that the mixed $[(n-C_4H_9)_4N]^+/Na^+$ salt reprecipitation works as desired, without "knocking-off" the supported organometallic moiety.

Control for the Potential Light Sensitivity of 2.¹⁷ In the drybox, a solution of 0.5 g (0.1 mmol) of **2** in 1 mL of acetonitrile- d_3 was placed in an airtight J. Young NMR tube. [The sample of **2** used in this experiment was synthesized and isolated under an inert nitrogen atmosphere in a Vacuum Atmospheres drybox while precautions were taken to minimize light exposure (i.e., covering the reaction flask with aluminum foil and performing the isolation under dim lighting only).] The NMR tube was removed from the drybox and was exposed to the laboratory neon lighting for 24 h. A ³¹P NMR spectrum subsequently acquired remained unchanged when compared to the ³¹P NMR spectrum collected on the same sample solution prior to light exposure. This control experiment shows that **2** is not light sensitive¹⁷ under the conditions of the experiment and, therefore, can be handled without taking additional precautions to minimize exposure to laboratory lighting.

Control for the Potential Air-Sensitivity of 2. In a control experiment, a solution of 0.5 g (0.1 mmol) of 2 in 1 mL of acetonitrile d_3 was placed in a 2 dram vial equipped with a magnetic stirbar and vigorously stirred for 12 h under air. During the experiment, acetonitrile- d_3 was added as needed to replenish the solvent lost due to evaporation and to maintain a solution volume of approximately 2 mL. A ³¹P NMR spectrum subsequently acquired remained unchanged when compared to the ³¹P NMR spectrum collected on the same sample solution of 2 prior to air exposure. The sample of 2 used in this experiment was synthesized and isolated under an inert nitrogen atmosphere in the drybox. In summary, this control experiment shows that 2 is not air sensitive under the conditions of the experiment and as such can be handled without taking additional precautions to minimize exposure to air, despite the fact that it is an oxidation catalyst for cyclohexene oxidation using O_2 (a fact that has important mechanistic implications).17b

Experiments Demonstrating Non-Ion-Exchangeability of 2. Results of ion (non)-exchange experiments have been reported earlier^{10d} but were independently repeated with the isolated complexes. In the drybox, 25 g of the macroreticular, strongly acidic resin Dowex 50 \times 8-400 (H⁺ form; PSO₃⁻H⁺) was placed in a beaker together with ca. 50 mL of degassed water. The resin was swirled for ca. 1 min, followed by decantation of the water. This process was repeated until the aqueous phase was clear and colorless. The resin was then packed onto a 50 cm \times 2.5 cm (length \times diameter) column. A large excess, ca. 30 mL, of degassed 40% $[(n-C_4H_9)_4N]^+OH^-/H_2O$ was diluted by ca. I part in 10 with distilled water, and the solution was then passed dropwise through the column. When the eluant tested basic with litmus paper, distilled water was passed through the column until the eluant tested neutral with litmus paper. The resulting $PSO_3^{-1}[(n-C_4H_9)_4N]^+$ column was then washed with five 50-mL portions of dry acetonitrile. A solution of ca. 0.5 g of 2 in 10 mL dry acetonitrile was passed dropwise through the column. This colored solution passed through the column with no apparent retention, indicating that the $[(C_6H_6)-$ Ru]²⁺ group remained firmly attached to 2. Previously, a control experiment demonstrated that authentic, free [(C₆H₆)Ru(CH₃- $(CN)_3$ ²⁺(BF₄⁻)₂ does indeed stick tightly to, and does not readily elute from, a $PSO_3^{-}[(n-C_4H_9)_4N]^+$ ion-exchange column (see p 1703 elsewhere in ref 10d).

An anion-exchange column of identical size was packed with strongly basic resin, Dowex $1 \times 2-400$ (Cl⁻ form), and was washed with dry acetonitrile. A sample of **2** was passed through this column

⁽³⁴⁾ Rocchiccioli-Deltcheff, C.; Thouvenot, R. Spectrosc. Lett. 1979, 12, 127.

of anion-exchange resin as described above for the cation-exchange resin. All of the colored sample was retained on the resin in the upper half of the column, indicating that the cationic $[(C_6H_6)Ru]^{2+}$ group has been rendered anionic by its tight binding to $P_2W_{15}Nb_3O_{62}^{9-}$ in 2.

Control Experiment Probing the Detectability of [(C6H6)Ru-(CD₃CN)₃]²⁺ in a Solution of 2. In a control experiment, 50 mg (0.0092 mmol) of 2 was dissolved in 1 mL of CD₃CN. In a separate disposable test tube, [(C6H6)RuCl2]2 (0.008 g, 0.0162 mmol) was slurried in 2 mL of CD₃CN. Solid AgBF₄ (0.013 g, 0.067 mmol) was added to the slurry, causing the immediate formation of an AgCl precipitate. The mixture was stirred for 30 min (magnetic stir bar) and filtered through Whatman No. 2 filter paper. The filter paper was washed with 1 mL of CD₃CN, and the washings were combined with the filtrate. The volume of the filtrate was then adjusted to 3.7 mL by addition of CD₃CN. Of this solution, containing [(C₆H₆)Ru(CD₃-CN)3]2+, 0.11 mL (0.000 92 mmol; 10% of [(C6H6)Ru(CD3CN)3]2+ relative to 2] was added to the heteropolyoxoanion solution. A ¹H NMR spectrum showed a new, separate resonance at δ 6.20, attributable to $[(C_6H_6)Ru(CD_3CN)_3]^{2+}$, in addition to the ¹H NMR resonance (δ 5.99) identified with the C_6H_6 ligand in $[(C_6H_6)Ru \cdot P_2W_{15}Nb_3O_{62}]^{7-}.$ These results demonstrate that (i) no [(C₆H₆)Ru(CD₃CN)₃]²⁺ has dissociated from 2 in CH₃CN (as, otherwise, it would have been detected) and (ii) the [(C6H6)Ru]2+ moiety in 2 and free [(C6H6)Ru(CD3-CN)₃]²⁺ are not in rapid exchange with one another on the ¹H NMR time scale.

Acknowledgment. We thank Dr. David K. Lyon and Andrew J. Fecteau for their initial experimental investigations of the mixed $[(n-C_4H_9)_4N]^+/Na^+$ salt of $[(C_5Me_5)Rh\cdotP_2W_{15}-Nb_3O_{62}]^{7-}$. This work was supported by the Department of Energy, Chemical Sciences Division, Office of Basic Energy, via Grant DOE-DE-FG06-089ER13998.

Supplementary Material Available: Textual presentation of the preparation of [(n-C₄H₉)₄N]_{5.5}Na_{1.5}[(C₅Me₅)Rh•P₂W₁₅Nb₃O₆₂], sedimentation-equilibrium molecular-weight plot for 1 (Figure A), IR spectrum $(KBr; cm^{-1})$ of $[(n-C_4H_9)_4N]_{5.5}Na_{1.5}[(C_5Me_5)Rh P_2W_{15}Nb_3O_{62}]$ (Figure B), sedimentation-equilibrium molecular-weight plot for 2 (Figure C), expanded IR (KBr; cm^{-1}) of $[(n-C_4H_9)_4N]_{4.5}Na_{2.5}[(C_6H_6)Ru^{-}P_2W_{15} Nb_{3}O_{62}]$ (Figure D), text describing the ^{17}O NMR experiments for 1, ¹⁷O and ³¹P NMR spectra obtained after attempted ¹⁷O-enrichment of 1 (Figure E), ¹⁷O and ³¹P NMR spectra obtained following the attempted synthesis of ¹⁷O-enriched 1 starting from $[(n-C_4H_9)_4N]_{9-x}H_xP_2W_{15-}$ Nb3¹⁷O₆O₅₆ (Figure F), packing diagram for the single-crystal X-ray structure of 1 (Figure G), ³¹P NMR spectrum of the mixed [(n- $C_4H_9)_4N]^+/Na^+$ salt of 1 in CD_3CN (Figure H), ^{183}W NMR spectrum of the mixed $[(n-C_4H_9)_4N]^+/Na^+$ salt of 1 (Figure I), ³¹P NMR spectra (CD₃CN, with 3 equiv of Kryptofix 2.2.2. added) of [(n-C₄H₉)₄N]_{4.5}-Na_{2.5}[(C₆H₆)Ru·P₂W₁₅Nb₃O₆₂] showing the presence of up to 20% unreacted P2W15Nb3O629- in early preparations (Figure J), calculated percentages of various countercation compositions for the elemental analysis (all elements) of $[(n-C_4H_9)_4N]_{5.5}Na_{1.5}[(C_5Me_5)RhP_2W_{15}Nb_3O_{62}]$ (Table A), calculated percentages of various countercation compositions for the elemental analysis (all elements) of [(n-C4H9)4N]4.5Na2.5-[(C₆H₆)Ru•P₂W₁₅Nb₃O₆₂] (Table B), details of the X-ray single-crystal structure data collection and refinement, distances, unrefined coordinates of N and C atoms, anisotropic thermal parameters, and least-squares planes (Tables C-H) (21 pages). Ordering information is given on any current masthead page.

IC9408157